Newton's second law:

$$
\begin{gather*}
\vec{F}_{R}=m \vec{a}, \tag{1}\\
\vec{F}_{R}=\sum_{i} \vec{F}_{i}, \tag{2}
\end{gather*}
$$

where \vec{F}_{R} - resultant force and \vec{F}_{i} are forces acting on the body.
Momentum (\vec{P}) can be expressed as:

$$
\begin{equation*}
\vec{P}=m \vec{V}=\vec{F} \Delta t \tag{3}
\end{equation*}
$$

Where velocity (\vec{V}) is equal to

$$
\begin{equation*}
\vec{V}=\vec{a} \Delta t \tag{4}
\end{equation*}
$$

Make 3 tables with 5 measurements each corresponding to 3 cases: a) $F_{n e t}, m_{w}=c o n s t$, b) $m_{w}, \Delta t=$ const , c) $F_{n e t}, \Delta t=$ const. Format them as:

$m_{w}, k g$	$F_{n e t}, N$	$\Delta t, s$	$t_{g a t e}, s$	$V_{w}, \mathrm{~m} / \mathrm{s}$	$F_{n e t} * \Delta t, \mathrm{~kg} * \mathrm{~m} / \mathrm{s}$

