Symmetry-inspired building blocks perform core logic computations in biological networks

Ian Leifer, Hernan Makse City College of New York, NY

Introduction

- A major ambition of system science is to decompose the complex system into the fundamental building blocks and study the way the collective behavior emerges from their interactions
- Network motifs represent circuits that appear more frequently in certain networks, yet they don't allow the network decomposition and their function is undefined
- Symmetry considerations provide a novel way to find building blocks originating from the synchronization in the network dynamics in real large-scale networks
- Symmetry fibrations have first been introduced in category theory by Alexander Grothendieck in 1958 and later studied in computer science, chaos theory and graph theory providing us with the well-developed mathematical machinery
- Disclaimer: we talk about applications to transcriptional regulatory networks and use examples from bacteria, but this approach can be applied to any directed network

Admissible ODEs

Set of ODEs is said to be admissible if they respect the network structure.

Why do network motifs fail to be functional?

- Subgraph of graph G=(N,E) is a graph G'=(N', E') such that $N' \in N$ and $E' \in E$.
- To count the number of occurrences of motif G' in graph G, we count the number of subgraphs of G isomorphic to G'.
- The state of the node is defined by the state of the set of nodes that send to it.
- Each node of the motif can have extra inputs from inside and outside the motif drastically changing the dynamics.

Input-trees, fibers, synchronization

Fiber Building blocks

An induced subgraph of G = (N, E) induced by the vertex set $N' \in N$ is the graph G'=(N', E') such that $E' = \{e = (n1, n2) \in E \mid n1, n2 \in N'\}$.

Fiber building block is an induced subgraph induced by: all the nodes in the fiber, all regulators that send inputs to the fiber and, if any node in a fiber is a part of a loop, the shortest loop including this node.

Building blocks fiber numbers

Building blocks are classified using 'fiber numbers' denoted |n, l>.n is the branching ratio of the input tree

$$n = \lim_{i \to \infty} \frac{a_{i+1}}{a_i}$$

and *I* is the number of external regulators of the fiber

Building blocks. Integer |n, l>

Building blocks. Fibonacci and composite fibers

Building block landscape

Dynamics of the autorepression loop (clock)

[1] I. Leifer, F. Morone, SDS Reis, JS Andrade, M. Sigman, HA Mákse. Circuits with broken fibration symmetries perform core logic computations in biological networks. PLoS Comput Biol 16(6):e1007776 (2020).

UNSAT-FFF synchronization and oscillation

[1] I. Leifer, F. Morone, SDS Reis, JS Andrade, M. Sigman, HA Mákse. Circuits with broken fibration symmetries perform core logic computations in biological networks. PLoS Comput Biol 16(6):e1007776 (2020).

[1] I. Leifer, F. Morone, SDS Reis, JS Andrade, M. Sigman, HA Mákse. Circuits with broken fibration symmetries perform core logic computations in biological networks. PLoS Comput Biol 16(6):e1007776 (2020).

Conclusion

- Fibration symmetry provides the novel way to analyze a biological network
- Symmetries of the network help uncover new functional building blocks related to synchronization
- Along with synchronization functional building blocks play the role of clock and memory
- This is a theoretically principled and algorithmically supported strategy to search for computational building blocks in directed networks

Further reading: Morone, Leifer, Makse, PNAS (2020) Leifer et al. Plos. Comp. bio (2020) Leifer et al. BMC Bioinformatics (2021)

Algorithm availability: https://github.com/makselab

Thank you for your attention!

Constructing symmetry breaking circuits

[1] I. Leifer, F. Morone, SDS Reis, JS Andrade, M. Sigman, HA Mákse. Circuits with broken fibration symmetries perform core logic computations in biological networks. PLoS Comput Biol 16(6):e1007776 (2020).

What is a transcriptional regulatory network?

Symmetry Fibration Leads to Synchronization.

Input trees, branching ratio

[1] A. Grothendieck, Technique de descente et theoremes d'existence en geometrie algebrique, I. Generalites. Descente par morphismes fidelement plats. Seminaire N. Bourbaki 5, 299–327 (1958–1960).

[2] P. Boldi, S. Vigna, Fibrations of graphs. Discrete Math. 243, 21–66 (2001)

[3] F. Morone, I. Leifer, HA Mákse. Fibration symmetries uncover the building blocks of biological networks. Proc Natl Acad Sci USA. 117(15):83068314 (2020)

 $n = \lim_{i \to \infty} \frac{a_{i+1}}{a_i}$

Input tree isomorphism, fibers

baeR \cpxR \cpxR

cpxR cpxR

_cpxR\cpxR\cp

[1] A. Grothendieck, Technique de descente et theoremes d'existence en geometrie algebrique, I. Generalites. Descente par morphismes fidelement plats. Seminaire N. Bourbaki 5, 299–327 (1958–1960).

[2] P. Boldi, S. Vigna, Fibrations of graphs. Discrete Math. 243, 21–66 (2001)

Symmetry fibration

[1] A. Grothendieck, Technique de descente et theoremes d'existence en geometrie algebrique, I. Generalites. Descente par morphismes fidelement plats. Seminaire N. Bourbaki 5, 299–327 (1958–1960).

[2] P. Boldi, S. Vigna, Fibrations of graphs. Discrete Math. 243, 21–66 (2001)

[3] F. Morone, I. Leifer, HA Mákse. Fibration symmetries uncover the building blocks of biological networks. Proc Natl Acad Sci USA. 117(15):83068314 (2020)

Symmetry fibration is a map between two graphs that satisfies the lifting property [2].

Network is the representation of the system of ODEs

$$\begin{cases} \frac{dx}{dt} = -k(x) + f(t) \\ \frac{dy_1}{dt} = -k(y_1) + g(x) \\ \frac{dy_2}{dt} = -k(y_2) + g(x) \\ \frac{dz_1}{dt} = -k(z_1) + g(y_1) \\ \frac{dz_2}{dt} = -k(z_2) + g(y_1) \\ \frac{dz_3}{dt} = -k(z_3) + g(y_2) \\ k(x) = -\alpha x \end{cases}$$

 $g(x) = \gamma_x \theta(x - k_x)$

Symmetry Fibration Leads to Synchronization

Stewart I, Golubitsky M, Pivato M. Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks. SIAM J. Appl. Dynam. Sys. 2(4),609-646 (2003).
L. DeVille, E. Lerman. Dynamics on Networks of Manifolds. Symmetry, Integrability and Geometry: Methods and Applications. 11 (2015).
E. Nijholt, BW Rink, JM Sanders. Graph fibrations and symmetries of network dynamics. Journal of Differential Equations, 261,4861-4896 (2014).
I. Belykh, M. Hasler. Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos. 21(1):016106 (2011).

Algorithms to find fibers

5

Initial	nortition
IIIIIai	Darrinon
menan	parcicion

Second partition

[1] H. Kamei, PJ. Cock. A Computation of balanced equivalence relations and their lattice for a coupled cell network. SIAM J Appl Dyn Syst. 12,352-382 (2013).

Input Set Color Vector (ISCV) of a node is a vector of length equal to the number of colors in the graph. Each entry of the ISCV of a given node counts how many nodes of each color are in the k-in of this node. The balanced coloring is achieved when all nodes of the same color have the same ISCVs.

Algorithm availability:

https://github.com/ianleifer/fibrationSymmetries https://github.com/makselab

Last partition

Strongly Connected Components

SAT-FFF and it's synchronization

[1] I. Leifer, F. Morone, SDS Reis, JS Andrade, M. Sigman, HA Mákse. Circuits with broken fibration symmetries perform core logic computations in biological networks. PLoS Comput Biol 16(6):e1007776 (2020).